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We report a conjugated polyelectrolyte fluorescence-based bio-
sensor P-C-3 and a general methodology to evaluate spectral
shape recognition to identify biomolecules using artificial intelli-
gence. By using well-defined analytes, we demonstrate that the
fluorescence spectral shape of P-C-3 is sensitive to minor struc-
tural changes and exhibits distinct signature patterns for different
analytes. A methodwas also developed to select useful features to
reduce computational complexity and prevent overfitting of the
data. It was found that the normalized intensity of 3 to 5 se-
lected wavelengths was sufficient for the fluorescence biosensor
to classify 13 distinct nucleotides and distinguish as little as single
base substitutions at distinct positions in the primary sequence of
oligonucleotides rapidly with nearly 100% classification accuracy.
Photophysical studies led to a model to explain the mechanism of
these fluorescence spectral shape changes, which provides theoret-
ical support for applying this method in complicated biological sys-
tems. Using the feature selection algorithm to measure the relative
intensity of a few selected wavelengths significantly reduces mea-
surement time, demonstrating the potential for fluorescence spec-
trum shape analysis in high-throughput and high-content screening.

machine learning | fluorescence | phosphate sensing | biosensor |
nucleic acids

Over the past 2 decades, major technological innovations in
screening as well as developments in artificial intelligence

have rapidly advanced the field of biomedical research (1, 2).
High-content screening has aided in the identification of novel
drug candidates, therapeutic targets, prognostic markers, and has
allowed for deeper insight into many different complex biologi-
cal phenomena (3–5). A trade-off, however, exists between ac-
curacy and universality for the biosensors used in such analyses.
Most biosensors are specifically designed to recognize a single
target and provide a one-dimensional signal, such as the intensity
of a single wavelength from an emission spectrum (5). More
complex multidimensional methodologies require the use of mul-
tiple probes and complex readouts to accurately assess complex
biological systems. The selection of biosensors for such analyses
often requires a priori knowledge about the target; therefore, the
interpretation of results may be vulnerable to bias and limit the
discovery of unanticipated observations, and the latent factors are
difficult to capture. Higher-dimensional information of emission
spectra, such as emission shape, remains insufficiently mined as it
has proven difficult to rapidly quantify the shape change of spectra
with high accuracy.
Conjugated polyelectrolytes (CPEs) are widely utilized in

multiple applications (6, 7) such as organic solar cells, photody-
namic therapy (8), and chemo- and biosensors (9, 10). Zhou and
Swager (11) first demonstrated the effect of amplified quenching,
which is able to amplify the fluorescence intensity change of con-
jugated polymers due to excitation energy delocalization and rapid
transmission along the conjugated backbone. Both “turn-off” and
“turn-on” CPE sensors have been developed based on amplified
fluorescence intensity change (7, 12, 13). However, little attention

has been paid to utilize the information contained in the shape of
CPE fluorescence spectra. The development of single-molecule
spectroscopy (14) and ultrafast time-resolved techniques (15, 16)
has revealed that the fluorescence spectral shape is dependent
upon polymer chain conformation and the emission of multiple
segments with different energy gaps (17), which can provide
useful structural information about the polymer’s surroundings.
Charged side chains and a hydrophobic backbone make the
conformation of CPEs sensitive to electrostatic, hydrophobic,
and steric interactions (7, 16), which make them good candidates
for use as broad-spectrum biosensors (18–21). In 2014, Wu
reported an array with 6 different CPEs for protein recognition
and distinction via fluorescence correlation spectroscopy signal
(22). Rana also reported using green fluorescent protein and a
family of positively charged CPEs to identify 16 different cell
types in vitro (23). However, both examples require arrays with
multiple biosensors and a complicated design, which may limit
the generality of the technique. The present report describes a
sensitive and selective biosensor which relies on the response of a
single fluorescent CPE.

Significance

Fluorescent biosensors are usually designed to recognize a
single target analyte and provide a one-dimensional signal
from an emission spectrum. Higher-dimensional information in
emission spectra and latent factors remain insufficiently uti-
lized. Here we report a broad-spectrum fluorescent biosensor
and a general methodology to evaluate spectral shape recog-
nition to classify biomolecules using machine learning. Using a
feature selection algorithm to measure the relative intensity of
a few selected wavelengths significantly reduces the mea-
surement time, demonstrating the potential for fluorescence
spectrum shape analysis in high-throughput technologies. By
using well-defined analytes, we explain the mechanism of
these fluorescence spectral shape changes, which is funda-
mental for applying this method for deeper insight into com-
plex phenomena with correlated signals in biological systems.
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Artificial intelligence is widely employed in diverse biomedical
disciplines, such as drug discovery, genetics, and diagnostics (24)
to extract patterns from data without explicit instructions (25).
Data with very high dimensionality, like fluorescence, tend to be
overfit by existing machine-learning methods, resulting in de-
generation of classification performance. Therefore, dimen-
sionality reduction is essential to recognize patterns from these
high-dimensional data efficiently and correctly (26). Feature
selection is a widely used method in machine learning to select a
small subset of relevant features from a complex feature set.

Compared with feature extraction, feature selection is not only
able to decrease computational cost and increase classification
performance, but also saves time during data harvesting by
measuring only the most pertinent features. With the help of
machine-learning algorithms and feature selection techniques,
the disadvantages (26) of high-dimensional spectral data can be
overcome, making it possible to develop a broad-spectrum bio-
sensor using fluorescence spectral shape analysis. In previous
studies, the selection of features is empirical with no apparent
attempt to optimize the choice to improve the performance of
classification algorithms and reduce data acquisition time. The
use of machine-learning–based feature selection in this work sets
it apart from previous studies that utilized linear discriminant
analysis (LDA) to classify the chromic response of a conjugated
polymer as it interacts with analytes (20, 21).
Herein we report a methodology for biosensing using the

cationic CPE P-C-3 (Fig. 1). We have previously reported that the
fluorescence of P-C-3 and related cationic CPEs is quenched by
polyphosphate ions (27, 28). The current study goes beyond the
previous work by demonstrating a general methodology to execute
spectral shape recognition to classify nucleotide phosphates using
machine-learning approaches. This is a report of selecting useful
information contained in fluorescence spectral shapes of a CPE
fluorescence-based biosensor associated with analyte structure for
classification and distinguishes as little as single base substitutions
at distinct positions in the primary sequence of oligonucleotides.
With correlated signals, this design is more likely to capture the
nonlinear collective effect of multiple factors and provide
deeper insights than traditional species-specific probes.

Results and Discussion
The cationic conjugated polyelectrolyte P-C-3 (Fig. 1) was
evaluated for its ability to serve as a fluorescence sensor for
nucleotide recognition. P-C-3 has a fluorescence quantum yield
of 27% in water and it provides 3 -NH3

+ units on each side chain
which can bind to anionic nucleotides via the phosphate moieties,

Fig. 1. Structures of P-C-3 and mono, di-, and trinucleotide phosphates.

Fig. 2. (A) Normalized fluorescence emission spectra of all 13 P-C-3/nucleotide mixtures by scaling between 0 and 1. (B) The change of mean classification
accuracy against the number of features during sequential floating backward search using LDA, SVM, and k-NN (k = 3) classification algorithms. The training
set is randomly partitioned from the whole data, and it contains 5 incidences for each P-C-3/nucleotide mixture. The mean classification accuracy is the out-of-
bag mean accuracy of 100 bootstrap iterations of the training set. (C) The change of mean classification accuracy against the number of features during
sequential floating backward search with the training set plus 10% random error. (D) Boxplot of the 3 optimal features (relative intensities of 392, 398, and
470 nm) selected by SVM classification algorithm. The whisker labels represent the SDs.
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primarily through electrostatic interactions, as well as other
nonspecific interactions with nitrogenous bases (27). Nucleotides
serve as the biomolecular building blocks of DNA and RNA and
are also critical for cellular energetics and signal transduction
(29). P-C-3 was applied as a broad-spectrum biosensor to classify
13 distinct nucleotides: the mono-, di-, and triphosphate forms of
adenosine (A), cytosine (C), guanine (G), and uracil (U) as well
as methyl-ATP (m6A), the most prevalent mammalian messenger
RNA (mRNA) modification (30, 31).
P-C-3 (20 μM) was added to each nucleotide in 2-(N-

morpholino)ethanesulfonic acid (MES) buffer (10 mM). The nu-
cleotide concentrations were adjusted to give a consistent ab-
sorption at 260 nm. Data were acquired with samples at 25 °C.
Normalization to absorption was utilized to allow for the future
analysis of unknown or complex mixtures where absorbance, not
concentration, could be used as a baseline. Each nucleotide was
mixed with P-C-3 in 8 individual microplate wells to generate 104
samples (13 nucleotides × 8 replicates). The fluorescence emission
spectrum of each P-C-3/nucleotide mixture was collected in 2-nm
increments over a range of 392 to 494 nm at an excitation at 350 nm.
The raw spectral data of each instance In have p dimensions:

In = ðIn392  nm, In394  nm, In396  nm, . . . , In494  nmÞ, [1]

where P = 52. Unity-based normalization was performed for the
fluorescence emission spectrum of each sample to remove the
variable of intensity, leaving only spectral shape information. In
Fig. 2A, it is notable that the normalized emission spectrum of
each P-C-3/nucleotide combination has a distinct pattern of emis-
sion shape. However, collecting and analyzing the entire fluores-
cence emission spectrum is not optimal for high-throughput
applications. Measuring the fluorescence intensity of every even
wavelength from 392 to 494 nm generates 52 features, taking ∼52×
longer than measuring the intensity at a single wavelength. Besides
longer data acquisition time, high-dimensional spectral data con-
tain a high level of irrelevant and redundant features, which tend
to decrease the performance of classification algorithms (26), es-
pecially with a small training set.
Feature selection was therefore applied to reduce the dimen-

sionality of the original spectral data. For feature selection and
model validation, the dataset was randomly partitioned into a
training set (65/104) and test set (39/104) with the same instances
under each category membership. For real-world applications,
instead of using normalized fluorescence intensity, the relative
fluorescence intensity at 414 nm of each instance is calculated as

In  relative = In=In414  nm. [2]

In414nm  relative is always 1, so this element was removed, and the
remaining vector was used for the analysis below. The whole

feature set contains 51 features that express the relative fluores-
cence intensity of every even wavelength from 392 to 494 nm
(except 414 nm) for each instance. These features are highly
correlated, so using filter models for feature selection will result
in a subset with features concentrated in one region of the spec-
tra. Instead, wrapper models provide a simple way to select a
feature subset considering the interaction of the algorithm and
the training set (32, 33). Since the training set is small compared
with the number of features, stratified bootstrap sampling was
applied for adding randomness to improve the generalizability
for selected features.

Fig. 3. LDA score plot of 3 selected features for 13 distinct nucleotides. The
3 features are the relative intensity of 398, 464, and 468 nm. LD1 and LD2
represent 64.67% and 23.69% of total variance; 95% confidence ellipses are
shown for each nucleotide.

Fig. 4. (A) Normalized fluorescence emission spectra of all P-C-3/oligonu-
cleotide mixtures at 10 μM (∼1 μM in polymer chains). (B) Normalized fluo-
rescence emission spectra of P-C-3/Oligo3 at 0.5 to 10 μM. The lines
representing a ratio of P-C-3: oligonucleotide of 1:1 and 1:2 are marked by
arrows. (C) LDA score plot of 5 selected features for 8 oligonucleotides that
each vary by 1 nucleotide compared with difference of oligonucleotide 1.
LD1 and LD2 represent 53.62% and 31.83% of total variance. Confidence
ellipses (95%) are shown for each oligonucleotide.
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To evaluate the feature selection process, 3 widely used al-
gorithms: LDA, support vector machines (SVM), and k-nearest
neighbors (k-NN), were applied and the results were evaluated
by classification accuracy. Fig. 2B illustrates the change of mean
classification accuracy during the sequential floating backward
search. With the full feature set, the mean classification accuracy
of LDA is 94.42%. In the process of feature elimination, the
mean classification accuracy decreased and reached the local
minimum of 91.80% with 31 features, which indicates some ir-
relevant or redundant features degraded the classifier in accu-
racy. Then, the mean classification accuracy started to increase
and reached 99.74% with only 3 features. For SVM and k-NN,
the mean classification accuracies are 99.76% and 100% with 3
selected features, and they are both higher than the mean clas-
sification accuracies with the full feature set. By adding 10%
random error to each feature, Fig. 2C exhibits a more pro-
nounced trend of increasing accuracy with feature elimination
and SVM reached 99.08% accuracy with 5 features. The results
of sequential floating backward search demonstrate that a small
optimal feature set can provide higher average classification
accuracy than the original features with lower computational
complexity and more generalizability. Since the optimal feature
set is small, using forward feature selection from the empty
feature set is more efficient. Fig. 2D illustrates the boxplot of the
optimal feature set obtained by sequential floating forward
search using LDA. Three optimal features are selected, and
mean classification accuracies of out-of-bag bootstrap samples
were close or equal to 100% for all 3 classification algorithms
when the sequential floating forward search was completed.
Fig. 3 demonstrates that the LDA score plot of the 3 selected

features with the training set clustered into 13 distinct groups
that represent each nucleotide. Uridine 5′-monophosphate
(UMP) and cytidine 5′-monophosphate (CMP) clusters appear
closest on the plot, but these 2 groups feature small variances
and therefore can still be discriminated with the help of LD3
(11.64% of total variance). The test set split at first was utilized to
evaluate the classifier with selected features. Fourfold cross-
validation was conducted and repeated 30 rounds with selected
features, resulting in a 100% overall classification accuracy for
each classification algorithm. Relative intensities of 398, 464, and
468 nm were found to be optimal features for LDA; 392, 398, and
470 nm for SVM (linear kernel); and 392, 398, and 468 nm for k-
NN with 100% accuracy for each classification algorithm (SI Ap-
pendix, Table S1). These results demonstrate that the intensities of
3 selected wavelengths plus the intensity of a reference wavelength
(414 nm) of P-C-3 were sufficient to classify 13 distinct nucleotides
within 1 min. Preliminary work shows that when multiple nucle-
otides are present in an analyte, the fluorescence response of P-C-
3 is unique. As such, application of machine-learning algorithms
allows identification of the components of the mixture with high
accuracy.
The sensitivity and stability of fluorescence spectral shape

analyses were further analyzed using DNA oligonucleotides.
Four oligonucleotide sequences were evaluated: 2 sequences of
21 bases (oligo1 and oligo2) and 2 sequences of 34 bases (oligo3
and oligo 4), with each size-matched pair containing an equiva-
lent purine to pyrimidine ratio, but with different individual
nucleotides (see SI Appendix, Table S2 structure 1–4). Oligonu-
cleotides (Sigma-Aldrich) were dissolved in DNase, RNase free,
UltraPureTM Distilled Water (Invitrogen) to create a stock solu-
tion concentration of 100 μM (oligonucleotide chain concentration).

Each oligonucleotide was mixed with 10 μM P-C-3 (∼1 μM in
polymer chains) in MES buffer and the fluorescence spectra
were collected as described above for single nucleotides. Fig. 4A
shows these 4 oligonucleotides have distinct fluorescence spec-
tral shapes when mixed with P-C-3. As demonstrated for oligo3
in Fig. 4B, the saturation was detected at a 1:2 molar ratio be-
tween P-C-3 chains and oligonucleotide, which indicates stability
of the fluorescence spectral shape is not affected by the variation
of concentration as long as the oligonucleotide is 2× more con-
centrated than P-C-3. To further illustrate this point, 4 replicates
of each oligonucleotide at 4, 7, and 10 μM were used in the
dataset and assigned to the same membership, resulting in 12
instances for each oligonucleotide. Three features, the relative
intensities of 402, 434, and 492 nm, were selected by LDA using
the feature selection method described above. The 50× repeated
6-fold cross-validation gave a 100% accuracy (SI Appendix, Table
S3). This perfect accuracy demonstrates that the fluorescence
spectral shape analysis is sensitive to differences in complicated
macromolecular analytes represented by distinct oligonucleotide
sequences. The discovery of the saturation point enables spectral
shape analysis using the signature pattern associated with the

Table 1. Size of P-C-3/nucleotide complexes and Stern–Volmer constants of nucleotides

Properties P-C-3 ATP CTP GTP UTP MATP ADP AMP

Mean diameter, nm 20.2 ± 3.2 75.9 ± 0.1 394.5 ± 0.1 432 ± 0.01 165.9 ± 0.1 148.7 ± 0.4 57.3 ± 0.1 46.2 ± 0.2
KSV (104 M−1) / 8.3 17.0 66. 52.5 21.5 2.3 0.1

Size of P-C-3/nucleotide complexes are measured by DLS in MES solution. The size of P-C-3 is measured by AFM. Stern–Volmer constants for nucleotides are
measured in 10 μM P-C-3 solution.

Fig. 5. Femtosecond transient absorption of singlet exciton on P-C-3. (A) P-C-3
alone, (B) P-C-3/ATP are excited at the pump wavelength of 390 nm with a
pump energy of 115 μJ. The color reflects the value of ΔA.
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structure independent of analyte concentration, which consti-
tutes a major advantage over intensity-based sensors. Further-
more, P-C-3 was mixed with 10 μM oligonucleotides that differ
by a single nucleotide at the end or middle of oligonucleotide 1,
including methyladenine and methylcytidine (see SI Appendix,
Table S2, structure 1 and 5–12) with 10 replicates. Fig. 4C shows
the LDA score plot with 5 selected relative intensities of 390,
398, 420, 430, and 482 nm, and the 50× repeated 5-fold cross-
validation gave a 99.1% accuracy (SI Appendix, Table S3c),
which demonstrates that this method is able to distinguish a
single base substitution either at the end or the middle of the
sequence in a 21-base oligonucleotide.
Previous studies have shown that the interaction of P-C-3 with

polyphosphate ions in aqueous solution leads to the formation of
aggregates (27). The interchain interactions that occur within
these aggregates give rise to the fluorescence quenching and
band-shape changes that are the basis of the analysis presented
above. The quenching studies are shown in SI Appendix, Fig. S1.
To gain insight into the interactions of P-C-3 with nucleotides
and the factors determining the fluorescence emission shape of
the conjugated polyelectrolyte, dynamic light scattering (DLS)
and atomic force microscopy (AFM) were used to study the size
of the P-C-3/nucleotide complexes. The sizes of all P-C-3/
nucleotide complexes were measured by DLS in MES solution
with the same concentration used for emission shape analysis.
The size of pure P-C-3 was measured by AFM since it is too small
to measure by DLS. The mean diameters of all of the P-C-3/
nucleotide complexes are larger than that of pure P-C-3, which
confirms the formation of aggregates (Table 1). Among these
complexes, P-C-3/nucleotide triphosphate complexes are larger
than P-C-3/nucleotide di- and monophosphate complexes. This
can be explained by the fact that negatively charged phosphate
groups of nucleoside triphosphates have stronger electrostatic
attractions with the branched amine side groups of P-C-3 than
nucleoside diphosphates and monophosphates, leading to larger
aggregates. This trend is also supported by Stern–Volmer
quenching constants (Ksv) of nucleotides with P-C-3 (Table 1).
The nucleoside triphosphates caused more pronounced
aggregation-induced quenching and showed higher Ksv values.
The nitrogenous base structures also impact aggregate size and
fluorescence quenching, indicating that, in addition to electro-
static interactions, hydrophobic interactions and steric inter-
actions between P-C-3 and the nucleotides also influence the
self-assembled structures of P-C-3/nucleotide complexes. Inter-
estingly, the N6 methyl derivative of adenosine 5′-triphosphate
(MATP) has a Stern–Volmer constant (Ksv) more than 2× that
of ATP, illustrating that P-C-3 can produce an amplified signal
change in response to a small structural difference in the analyte.
A reasonable explanation for the significant increase in Ksv is
that the N6 methylation of ATP weakens hydrogen bonding be-
tween the amine and water, leading to an increase in its hydro-
phobicity and thus a stronger aggregation with the hydrophobic
backbone of P-C-3.
In addition to the aggregation, the overall fluorescence spec-

tral shape is strongly influenced by the conformation of the
polymer chains (34). Femtosecond transient absorption was applied

to study the rapid photophysical processes of the system. According
to the literature (35), photoinduced absorption can be utilized to
study the exciton dynamics on the polymer chain. Fig. 5 shows the
photoinduced absorption (PA) global time-resolved spectrum from
825 to 1,000 nm of P-C-3 and P-C-3/ATP. The PA in this region is
assigned to the PA of the singlet exciton of P-C-3, which is com-
parable with previous reports (35) and the absorption maximum is
around 850 nm, such that the decay of the PA intensity at 850 nm
is fitted using the biexponential decay function to obtain 2 decay
lifetimes:

IðtÞ− I∞ =A1et=τ1 +A2et=τ2 , [3]

where Ai represents the weight of each rate constant τi and I∞ is
the PA amplitude at time infinity. A kinetic model is proposed to
assign these 2 lifetimes to different kinetic pathways. In Tables 2
and 3, the decay component (τ2) of P-C-3 is assigned to the rapid
energy transfer from isolated polymer chains which have no in-
terchain π-electron delocalization, to aggregated chains where
π-electron density is delocalized by interchain interactions (16).
The assignment well explained the decrease in τ2 and the in-
crease of the amplitude A2 in Table 2, after the addition of
nucleotides which promote the formation of aggregates. The
energy transfer process competes with the emission process of
“isolated” chains, which influences both the quantum yield and
the fluorescence emission shape of P-C-3/nucleotide complexes.
Not only does the energy transfer to the aggregates, but the de-
cay processes of isolated chains also influence the fluorescence
emission shape. This kinetic model links the long lifetime com-
ponent (τ1) to the fluorescence emission and other decay chan-
nels in isolated chains. After excitation, energy is transferred
from the high-energy sites to energy traps before emitting or
decaying nonradiatively (16, 34). The variation of the long lifetime
component (τ1) between different P-C-3/nucleotide complexes im-
plies that the conformations of isolated chains are also affected by
interactions with nucleotides, which influence the fluorescence
shape together with the formation of aggregates.
The kinetic model also gives an insight to the signature pattern

of fluorescence shape independent of analyte concentration. In
Table 3, after the concentration of oligonucleotide exceeded 2×
the molar ratio of P-C-3 chains, the amplitudes of both decay
pathways remain stable. This result demonstrates that the in-
teractions between P-C-3 and the analyte are saturated, and
addition of more analyte does not induce additional aggregation
or affect the conformation of the isolated polymer chains. This
explanation is also supported by the maintenance of the particle
sizes of P-C-3/nucleotide complexes when adding more oligo-
nucleotide after the saturation point (SI Appendix).
Although this model can explain the general trends of our

observations, it is still difficult to predict the lifetime of P-C-3/
nucleotide complexes and the fluorescence emission spectral
shapes by a simple theoretical model. With the help of machine-
learning methods, these multimodal changes in P-C-3 florescence
can be utilized for single nucleotide and oligonucleotide classi-
fication, which reveals the advantage of using machine learning
in the analysis of this complicated system as a complementary

Table 2. Photoinduced absorption decay lifetimes of P-C-3/
nucleotide complexes at 850 nm when excited by 390-nm pulse

Species A1 τ1, ps A2 τ2, ps

P-C-3 0.62 320 ± 15 0.38 8.7 ± 0.8
ATP 0.49 360 ± 12 0.51 6.7 ± 0.3
CTP 0.60 368 ± 6 0.40 7.2 ± 0.3
GTP 0.40 252 ± 9 0.60 7.2 ± 0.3
UTP 0.40 245 ± 18 0.60 4.4 ± 0.4
MATP 0.28 139 ± 20 0.72 2.4 ± 0.4
ADP 0.59 363 ± 6 0.41 6.6 ± 0.2
AMP 0.58 329 ± 6 0.42 7.9 ± 0.3

Table 3. Photoinduced absorption decay lifetimes of P-C-3 with
oligonucleotide sequences at 850 nm when excited by 390-nm
pulse

Molar ratio A1 τ1, ps A2 τ2, ps

1:1 0.38 142 ± 8 0.62 3.9 ± 0.1
2:1 0.20 57 ± 5 0.80 3.8 ± 0.2
4:1 0.24 68 ± 9 0.76 3.8 ± 0.2

Traces were fit from the intensity maximum by exponential decay with 2
lifetimes, and the sum of A1 and A2 are normalized to 1 to reflect their
amplitudes.
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methodology in evaluating nonspecific interactions in broad-spectrum
biosensor design and analysis.

Conclusions
In summary, this work demonstrated a methodology of designing
a fluorescence-based biosensor for spectral shape analysis by
artificial intelligence with a model explaining the change of the
fluorescence shape. The CPE-based biosensor, P-C-3, was found
to distinguish structurally similar nucleotides and oligonucleo-
tides with high precision and specificity using a methodology of
selecting optimal features and analyzing the fluorescence spectral
shape. This fluorescence biosensor was able to classify 13 distinct
single nucleotides and as well as 12 oligonucleotides differing by as
little as 1 base within 1 min with nearly 100% classification ac-
curacy. Saturation points were also revealed for oligonucleotide
sequences which enable spectral shape analysis using the signature
pattern independent of analyte concentration. A method was also
developed to select useful features to reduce computational
complexity, improve classification performance, and reduce data
acquisition time.
The size and fluorescence lifetime change of the distinct P-C-3/

nucleotide complexes arise due to the formation of aggregates
between nucleotides and P-C-3 solution. Ultrafast photoinduced
absorption studies of P-C-3/nucleotide complexes reveal the sin-
glet excitation decay can be fit to 2 lifetime components. The short
lifetime component is assigned to the rapid energy transfer from
isolated polymer chains to aggregated chains and the longer life-
time component is linked to the exciton relaxation from isolated
chains, which is related to the conformation of the polymer chains.
Both the conformation change of the isolated polymer chain and
the formation of aggregates influence the fluorescence emission
shape which is the basis for classification. This demonstrates P-C-3

can detect changes in electrostatic, hydrophobic, and steric inter-
actions in a self-assembling system in response to small change in
analyte structure. These nonspecific interactions result in fluo-
rescence emission shape changes that can detect differences as
subtle as methylation of ATP without more sophisticated chemical
processes or a complicated sensor array.
In the current study, the sensor is limited to detection of single

target nucleotides or polynucleotides in vitro. However, given the
high sensitivity and selectivity of P-C-3 spectral response, it is
likely that future work will enable the sensor response to be ex-
tended to detection and/or identification of more than a single
target analyte in biologically relevant environments. Furthermore,
the high classification accuracy and fast detection speed reveal the
potential for spectral shape analysis in high-throughput and high-
content screening, as well as the application of this technique in
mammalian cells.

Materials and Methods
A brief summary is provided here; see SI Appendix for details. The synthesis
and characterization of P-C-3 were described previously (27). The molecular
weight (Mn) was 12 kDa with polydispersity index (PDI) = 2.2. Fluorescence
spectra for Stern–Volmer quenching studies were obtained on a PTI Quanta
Master spectrometer and spectra for classification were obtained on a Bio-
Tek Synergy H1 Hybrid Multi-Mode Plate Reader. UV-visible absorption
spectra were obtained on a Varian Cary 100 dual-beam spectrophotometer.
All analytical codes were written in R programming language (open source)
with MLR package and other basic packages.
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